Nonlinear physically-based models for decoding motor-cortical population activity

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, books, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Neural motor prostheses (NMPs) require the accurate decoding of motor cortical population activity for the control of an artificial motor system. Previous work on cortical decoding for NMPs has focused on the recovery of hand kinematics. Human NMPs however may require the control of computer cursors or robotic devices with very different physical and dynamical properties. Here we show that the firing rates of cells in the primary motor cortex of non-human primates can be used to control the parameters of an artificial physical system exhibiting realistic dynamics. The model represents 2D hand motion in terms of a point mass connected to a system of idealized springs. The nonlinear spring coefficients are estimated from the firing rates of neurons in the motor cortex. We evaluate linear and a nonlinear decoding algorithms using neural recordings from two monkeys performing two different tasks. We found that the decoded spring coefficients produced accurate hand trajectories compared with state-of-the-art methods for direct decoding of hand kinematics. Furthermore, using a physically-based system produced decoded movements that were more “natural” in that their frequency spectrum more closely matched that of natural hand movements.