Scheduled System Maintenance
On Tuesday, May 22, IEEE Xplore will undergo scheduled maintenance. Single article sales and account management will be unavailable
from 6:00am–5:00pm ET. There may be intermittent impact on performance from noon–6:00pm ET.
We apologize for the inconvenience.

Scalable Discriminative Learning for Natural Language Parsing and Translation

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, books, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Parsing and translating natural languages can be viewed as problems of predicting tree structures. For machine learning approaches to these predictions, the diversity and high dimensionality of the structures involved mandate very large training sets. This paper presents a purely discriminative learning method that scales up well to problems of this size. Its accuracy was at least as good as other comparable methods on a standard parsing task. To our knowledge, it is the first purely discriminative learning algorithm for translation with treestructured models. Unlike other popular methods, this method does not require a great deal of feature engineering a priori, because it performs feature selection over a compound feature space as it learns. Experiments demonstrate the method's versatility, accuracy, and efficiency. Relevant software is freely available at http://nlp.cs.nyu.edu/parser and http://nlp.cs.nyu.edu/GenPar.