Temporal Coding using the Response Properties of Spiking Neurons

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, books, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In biological neurons, the timing of a spike depends on the timing of synaptic currents, in a way that is classically described by the Phase Response Curve. This has implications for temporal coding: an action potential that arrives on a synapse has an implicit meaning, that depends on the position of the postsynaptic neuron on the firing cycle. Here we show that this implicit code can be used to perform computations. Using theta neurons, we derive a spike-timing dependent learning rule from an error criterion. We demonstrate how to train an auto-encoder neural network using this rule.