Learning Time-Intensity Profiles of Human Activity using Non-Parametric Bayesian Models

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, books, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Data sets that characterize human activity over time through collections of time-stamped events or counts are of increasing interest in application areas as human-computer interaction, video surveillance, and Web data analysis. We propose a non-parametric Bayesian framework for modeling collections of such data. In particular, we use a Dirichlet process framework for learning a set of intensity functions corresponding to different categories, which form a basis set for representing individual time-periods (e.g., several days) depending on which categories the time-periods are assigned to. This allows the model to learn in a data-driven fashion what “factors” are generating the observations on a particular day, including (for example) weekday versus weekend effects or day-specific effects corresponding to unique (single-day) occurrences of unusual behavior, sharing information where appropriate to obtain improved estimates of the behavior associated with each category. Applications to real—world data sets of count data involving both vehicles and people are used to illustrate the technique.