By Topic

Modeling and control of formations of nonholonomic mobile robots

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Desai, J.P. ; Program for Robotics, Intelligent Sensing, & Mechatronics (PRISM) Lab., Drexel Univ., Philadelphia, PA, USA ; Ostrowski, J.P. ; Kumar, V.

This paper addresses the control of a team of nonholonomic mobile robots navigating in a terrain with obstacles while maintaining a desired formation and changing formations when required, using graph theory. We model the team as a triple, (g, r, H), consisting of a group element g that describes the gross position of the lead robot, a set of shape variables r that describe the relative positions of robots, and a control graph H that describes the behaviors of the robots in the formation. Our framework enables the representation and enumeration of possible control graphs and the coordination of transitions between any two formations

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:17 ,  Issue: 6 )