By Topic

Active global localization for a mobile robot using multiple hypothesis tracking

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jensfelt, P. ; Centre for Autonomous Syst., R. Inst. of Technol., Stockholm, Sweden ; Kristensen, S.

We present a probabilistic approach for mobile robot localization using an incomplete topological world model. The method, called the multi-hypothesis localization (MHL), uses multi-hypothesis Kalman filter based pose tracking combined with a probabilistic formulation of hypothesis correctness to generate and track Gaussian pose hypotheses online. Apart from a lower computational complexity, this approach has the advantage over traditional grid based methods that incomplete and topological world model information can be utilized. Furthermore, the method generates movement commands for the platform to enhance the gathering of information for the pose estimation process. Extensive experiments are presented from two different environments, a typical office environment and an old hospital building

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:17 ,  Issue: 5 )