By Topic

Performance-optimized applied identification of separable distributed-parameter processes

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gorinevsky, D. ; Honeywell Global Control Lab., Cupertino, CA

Studies practical algorithms for parametric identification of cross-directional processes from input/output data. Instead of working directly with the original two-dimensional array of the high-resolution profile scans, the proposed algorithms use separation properties of the problem. It is demonstrated that by estimating and identifying in turn cross directional and time responses of the process, it is possible to obtain unbiased least-square error estimates of the model parameters. At each step, a single data sequence is used for identification which ensures high computational performance of the proposed algorithm. A theoretical proof of algorithm convergence is presented. The discussed algorithms are implemented in an industrial identification tool and the note includes a real-life example using paper machine data

Published in:

Automatic Control, IEEE Transactions on  (Volume:46 ,  Issue: 10 )