Cart (Loading....) | Create Account
Close category search window

Conditional densities for continuous-time nonlinear hybrid systems with applications to fault detection

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hibey, Joseph L. ; Dept. of Electr. Eng., Colorado Univ., Denver, CO, USA ; Charalambous, C.D.

Continuous-time nonlinear stochastic differential state and measurement equations, all of which have coefficients capable of abrupt changes at a random time, are considered; finite-state jump Markov chains are used to model the changes. Conditional probability densities, which are essential in obtaining filtered estimates for these hybrid systems, are then derived. They are governed by a coupled system of stochastic partial differential equations. When the Q matrix of the Markov chain is either lower or upper diagonal, it is shown that the system of conditional density equations is finite-dimensional computable. These findings are then applied to a fault detection problem to compute state estimates that include the failure time

Published in:

Automatic Control, IEEE Transactions on  (Volume:44 ,  Issue: 11 )

Date of Publication:

Nov 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.