By Topic

Lead time modeling and acceleration of product design and development

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Narahari, Y. ; Dept. of Comput. Sci. & Autom., Indian Inst. of Sci., Bangalore, India ; Viswanadham, N. ; Kumar, V.K.

New product development is an important business process and constitutes a major contributor to the business excellence of any manufacturing firm. Designing an optimized new product development process is an important problem in itself and is of significant practical and research interest. Lead time is an important performance metric for a product development organization. We develop lead time models for product development organizations that involve multiple, concurrent projects with contention for human/technical resources. The objective is to explore how the lead times call be reduced using efficient scheduling, input control, load balancing, and variability reduction. The models are based on single class and multiclass queueing networks and capture important facets of a product development organization. Within the new product development process, we focus attention on the product design process. Two product design organizations, which we call Company ABC and Company XYZ, provide the real-world setting for our model-based lead time reduction. First, we present a coarse, conceptual queueing network model of Company ABC and show how rapid performance analysis can be used to explore opportunities for accelerating the design process. In particular, we show how effective input control, process control, load balancing, and cross-functional work can cut the lead times. Next, we present multiclass queueing network models for both the companies ABC and XYZ. The re-entrant line models show up certain scheduling issues pertaining to internal flows in the product design network. Using a class of fluctuation smoothing scheduling policies, we demonstrate how lead times can be reduced appreciably, without committing additional resources. The models presented are sufficiently generic and conceptual, and will be of much value in project planning and management in product design organizations and also more generally in product development organizations

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:15 ,  Issue: 5 )