By Topic

Efficient algorithms of clustering adaptive nonlinear filters

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lainiotis, D.G. ; Intelligent Syst. Technol., Tampa, FL, USA ; Papaparaskeva, P.

This paper proposes a new class of efficient adaptive nonlinear filters whose estimation error performance (in a minimum mean square sense) is superior to that of competing approximate nonlinear filters, e.g., the well-known extended Kalman filter (EKF). The proposed filters include as special cases both the EKF and previously proposed partitioning filters. The new methodology performs an adaptive selection of appropriate reference points for linearization from an ensemble of generated trajectories that have been processed and clustered accordingly to span the whole state space of the desired signal. Through a series of simulation examples, the approach is shown significantly superior to the classical EKF with comparable computational burden

Published in:

Automatic Control, IEEE Transactions on  (Volume:44 ,  Issue: 7 )