By Topic

Finite sample properties of linear model identification

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weyer, E. ; Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia ; Williamson, R.C. ; Mareels, I.M.Y.

In this paper, we consider the finite sample properties of prediction error methods using a quadratic criterion function for system identification. The problem we pose is: How many data points are required to guarantee with high probability that the expected value of the quadratic identification criterion is close to its empirical mean value? The sample sizes are obtained using risk minimization theory which provides uniform probabilistic bounds on the difference between the expected value of the squared prediction error and its empirical mean evaluated on a finite number of data points. The bounds are very general. No assumption is made about the true system belonging to the model class, and the noise sequence is not assumed to be uniformly bounded. Further analysis shows that in order to maintain a given bound on the deviation, the number of data points needed grows no faster than quadratically with the number of parameters for FIR and ARX models

Published in:

Automatic Control, IEEE Transactions on  (Volume:44 ,  Issue: 7 )