By Topic

Stable haptic interaction with virtual environments

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Adams, R.J. ; Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA ; Hannaford, B.

This paper addresses fundamental stability and performance issues associated with haptic interaction. It generalizes and extends the concept of a virtual coupling network, an artificial link between the haptic display and a virtual world, to include both the impedance and admittance models of haptic interaction. A benchmark example exposes an important duality between these two cases. Linear circuit theory is used to develop necessary and sufficient conditions for the stability of a haptic simulation, assuming the human operator and virtual environment are passive. These equations lead to an explicit design procedure for virtual coupling networks which give maximum performance while guaranteeing stability. By decoupling the haptic display control problem from the design of virtual environments, the use of a virtual coupling network frees the developer of haptic-enabled virtual reality models from issues of mechanical stability

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:15 ,  Issue: 3 )