By Topic

Mobility of bodies in contact. I. A 2nd-order mobility index for multiple-finger grasps

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rimon, E. ; Dept. of Mech. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Burdick, J.W.

Using a configuration-space approach, the paper develops a 2nd-order mobility theory for rigid bodies in contact. A major component of this theory is a coordinate invariant 2nd-order mobility index for a body, B, in frictionless contact with finger bodies A1,...A k. The index is an integer that captures the inherent mobility of B in an equilibrium grasp due to second order, or surface curvature, effects. It differentiates between grasps which are deemed equivalent by classical 1st-order theories, but are physically different. We further show that 2nd-order effects can be used to lower the effective mobility of a grasped object, and discuss implications of this result for achieving new lower bounds on the number of contacting finger bodies needed to immobilize an object. Physical interpretation and stability analysis of 2nd-order effects are taken up in the companion paper

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:14 ,  Issue: 5 )