Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Optimization Techniques to Improve Training Speed of Deep Neural Networks for Large Speech Tasks

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sainath, T.N. ; IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA ; Kingsbury, B. ; Soltau, H. ; Ramabhadran, B.

While Deep Neural Networks (DNNs) have achieved tremendous success for large vocabulary continuous speech recognition (LVCSR) tasks, training these networks is slow. Even to date, the most common approach to train DNNs is via stochastic gradient descent, serially on one machine. Serial training, coupled with the large number of training parameters (i.e., 10-50 million) and speech data set sizes (i.e., 20-100 million training points) makes DNN training very slow for LVCSR tasks. In this work, we explore a variety of different optimization techniques to improve DNN training speed. This includes parallelization of the gradient computation during cross-entropy and sequence training, as well as reducing the number of parameters in the network using a low-rank matrix factorization. Applying the proposed optimization techniques, we show that DNN training can be sped up by a factor of 3 on a 50-hour English Broadcast News (BN) task with no loss in accuracy. Furthermore, using the proposed techniques, we are able to train DNNs on a 300-hr Switchboard (SWB) task and a 400-hr English BN task, showing improvements between 9-30% relative over a state-of-the art GMM/HMM system while the number of parameters of the DNN is smaller than the GMM/HMM system.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 11 )