By Topic

Array Signal Processing via Sparsity-Inducing Representation of the Array Covariance Matrix

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhang-Meng Liu ; Nat. Univ. of Defense Technol., Changsha, China ; Zhi-Tao Huang ; Yi-Yu Zhou

A method named covariance matrix sparse representation (CMSR) is developed to detect the number and estimate the directions of multiple, simultaneous sources by decomposing the array output covariance matrix under sparsity constraint. In CMSR the covariance matrix elements are aligned to form a new vector, which is then represented on an overcomplete spatial dictionary, and the signal number and directions are finally derived from the representation result. A hard threshold, which is selected according to the perturbation of the covariance elements, is used to tolerate the fitting error between the actual and assumed models. A computation simplification technique is also presented for CMSR in special array geometries when more than one pair of sensors has equal distances, such as the uniform linear array (ULA). Moreover, CMSR is modified with a blind-calibration process under imperfect array calibration to enhance its adaptation to practical applications. Simulation results demonstrate the performance of CMSR.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:49 ,  Issue: 3 )