Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Optimal Placement of Heterogeneous Sensors for Targets with Gaussian Priors

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chun yang ; Sigtem Technol., Inc., San Mateo, CA, USA ; Kaplan, L. ; Blasch, E. ; Bakich, M.

An optimal strategy for geometric sensor placement to enhance target tracking performance is developed. Recently, a considerable amount of work has been published on optimal conditions for single-update placement of homogeneous sensors (same type and same measurement quality) in which the targets are either assumed perfectly known or the target location uncertainty is averaged out via the expected value of the determinant of the Fisher information matrix (FIM). We derive conditions for optimal placement of heterogeneous sensors based on maximization of the information matrix to be updated by the heterogeneous sensors from an arbitrary Gaussian prior characterizing the uncertainty about the initial target location. The heterogeneous sensors can be of the same or different types (ranging sensors, bearing-only sensors, or both). The sensors can also make, over several time steps, multiple independent measurements of different qualities. Placement strategies are derived and their performance is illustrated via simulation examples.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:49 ,  Issue: 3 )