By Topic

Electronic Cleansing for 24-H Limited Bowel Preparation CT Colonography Using Principal Curvature Flow

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
van Ravesteijn, V.F. ; Quantitative Imaging Group, Delft Univ. of Technol., Delft, Netherlands ; Boellaard, T.N. ; van der Paardt, M.P. ; Serlie, I.W.O.
more authors

CT colonography (CTC) is one of the recommended methods for colorectal cancer screening. The subject's preparation is one of the most burdensome aspects of CTC with a cathartic bowel preparation. Tagging of the bowel content with an oral contrast medium facilitates CTC with limited bowel preparation. Unfortunately, such preparations adversely affect the 3-D image quality. Thus far, data acquired after very limited bowel preparation were evaluated with a 2-D reading strategy only. Existing cleansing algorithms do not work sufficiently well to allow a primary 3-D reading strategy. We developed an electronic cleansing algorithm, aimed to realize optimal 3-D image quality for low-dose CTC with 24-h limited bowel preparation. The method employs a principal curvature flow algorithm to remove heterogeneities within poorly tagged fecal residue. In addition, a pattern recognition-based approach is used to prevent polyp-like protrusions on the colon surface from being removed by the method. Two experts independently evaluated 40 CTC cases by means of a primary 2-D approach without involvement of electronic cleansing as well as by a primary 3-D method after electronic cleansing. The data contained four variations of 24-h limited bowel preparation and was based on a low radiation dose scanning protocol. The sensitivity for lesions ≥6 mm was significantly higher for the primary 3-D reading strategy (84%) than for the primary 2-D reading strategy (68%) (p = 0.031). The reading time was increased from 5:39 min (2-D) to 7:09 min (3-D) (p = 0.005); the readers' confidence was reduced from 2.3 (2-D) to 2.1 (3-D) ( p = 0.013) on a three-point Likert scale. Polyp conspicuity for cleansed submerged lesions was similar to not submerged lesions (p = 0.06). To our knowledge, this study is the first to describe and clinically validate an electronic cleansing algorithm that facilitates low-dose CTC with 24-h limited bowel preparation.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:60 ,  Issue: 11 )