By Topic

Speech emotion recognition using Support Vector Machines

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Automatic recognition of emotional states from human speech is a current research topic with a wide range. In this paper an attempt has been made to recognize and classify the speech emotion from three language databases, namely, Berlin, Japan and Thai emotion databases. Speech features consisting of Fundamental Frequency (F0), Energy, Zero Crossing Rate (ZCR), Linear Predictive Coding (LPC) and Mel Frequency Cepstral Coefficient (MFCC) from short-time wavelet signals are comprehensively investigated. In this regard, Support Vector Machines (SVM) is utilized as the classification model. Empirical experimentation shows that the combined features of F0, Energy and MFCC provide the highest accuracy on all databases provided using the linear kernel. It gives 89.80%, 93.57% and 98.00% classification accuracy for Berlin, Japan and Thai emotions databases, respectively.

Published in:

Knowledge and Smart Technology (KST), 2013 5th International Conference on

Date of Conference:

Jan. 31 2013-Feb. 1 2013