By Topic

Structural Analysis of Laplacian Spectral Properties of Large-Scale Networks

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Victor M. Preciado ; Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA ; Ali Jadbabaie ; George C. Verghese

Using methods from algebraic graph theory and convex optimization, we study the relationship between local structural features of a network and the eigenvalues of its Laplacian matrix. In particular, we propose a series of semidefinite programs to find new bounds on the spectral radius and the spectral gap of the Laplacian matrix in terms of a collection of local structural features of the network. Our analysis shows that the Laplacian spectral radius is strongly constrained by local structural features. On the other hand, we illustrate how local structural features are usually insufficient to accurately estimate the Laplacian spectral gap. As a consequence, random graph models in which only local structural features are prescribed are, in general, inadequate to faithfully model Laplacian spectral properties of a network.

Published in:

IEEE Transactions on Automatic Control  (Volume:58 ,  Issue: 9 )