By Topic

Fusion of Spatially Referring Natural Language Statements with Random Set Theoretic Likelihoods

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bishop, A.N. ; NICTA, Australian Nat. Univ. (ANU), Canberra, ACT, Australia ; Ristic, B.

Localisation via the fusion of spatially referring natural language statements is considered here. The contribution lies in the underlying problem formulation and a robust modelling framework. Random-set-based estimation is the underlying mathematical formalism. Each statement generates a generalised likelihood function. A Bayesian filter is outlined that takes a sequence of likelihoods generated by multiple statements. The idea is to recursively build a map over the state space that can be used to infer the state.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:49 ,  Issue: 2 )