Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Multi-Band Radar Receiver Design Approach for Minimum Bandpass Sampling

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Munoz-Ferreras, J. ; Dept. of Signal Theor. & Commun., Univ. of Alcala, Alcalá de Henares, Spain ; Gomez-Garcia, R. ; Perez-Martinez, F.

Multi-frequency radars, which are employed in a plurality of emerging applications, exploit the echoes for different bands that come from illuminated targets. A compact multi-function architecture that makes use of direct sampling could be a preferable choice for these new-generation radar systems, with RF front-end design a first step in their development. Here, within the framework of multi-frequency radars, an analytical tool for simultaneously acquiring the signal bands by using the minimum sub-Nyquist sampling frequency is addressed. Although the dual-band radar scenario is exhaustively analyzed, keys to understand the acquisition of more-than-two-band systems are also provided. Moreover, as the core of the associated RF architecture to carry out arbitrary multi-band signal pre-selections, a new class of microwave planar multi-passband filters based on stepped-impedance-line signal-interference concepts is reported. Also, for validation, the construction and testing of a microstrip spectrally-asymmetrical dual-passband filter prototype for a specific example of minimum-sampling dual-frequency radar RF front-end are shown.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:49 ,  Issue: 2 )