By Topic

Estimating Scene-Oriented Pseudo Depth With Pictorial Depth Cues

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jaeho Lee ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Seungwoo Yoo ; Changick Kim ; Vasudev, B.

Estimating depth information from a single image has recently attracted great attention in 3D-TV applications, such as 2D-to-3D conversion owing to an insufficient supply of 3-D contents. In this paper, we present a new framework for estimating depth from a single image via scene classification techniques. Our goal is to produce perceptually reasonable depth for human viewers; we refer to this as pesudo depth estimation. Since the human visual system highly relies on structural information and salient objects in understanding scenes, we propose a framework that combines two depth maps: initial pseudo depth map (PDM) and focus depth map. We use machine learning based scene classification to classify the image into one of two classes, namely, object-view and non-object-view. The initial PDM is estimated by segmenting salient objects (in the case of object-view) and by analyzing scene structures (in the case of non-object-view). The focus blur is locally measured to improve the initial PDM. Two depth maps are combined, and a simple filtering method is employed to generate the final PDM. Simulation results show that the proposed method outperforms other state-of-the-art approaches for depth estimation in 2D-to-3D conversion, both quantitatively and qualitatively. Furthermore, we discuss how the proposed method can effectively be extended to image sequences by employing depth propagation techniques.

Published in:

Broadcasting, IEEE Transactions on  (Volume:59 ,  Issue: 2 )