By Topic

15-nW Biopotential LPFs in 0.35- \mu{\rm m} CMOS Using Subthreshold-Source-Follower Biquads With and Without Gain Compensation

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Tan-Tan Zhang ; Biomed. Eng. Lab., Univ. of Macau, Macao, China ; Pui-In Mak ; Vai, M.-I. ; Peng-Un Mak
more authors

Most biopotential readout front-ends rely on the g m- C lowpass filter (LPF) for forefront signal conditioning. A small g m realizes a large time constant ( τ = C / g m) suitable for ultra-low-cutoff filtering, saving both power and area. Yet, the noise and linearity can be compromised, given that each g m cell can involve one or several noisy and nonlinear V- I conversions originated from the active devices. This paper proposes the subthreshold-source-follower (SSF) Biquad as a prospective alternative. It features: 1) a very small number of active devices reducing the noise and nonlinearity footsteps; 2) No explicit feedback in differential implementation, and 3) extension of filter order by cascading. This paper presents an in-depth treatment of SSF Biquad in the nW-power regime, analyzing its power and area tradeoffs with gain, linearity and noise. A gain-compensation (GC) scheme addressing the gain-loss problem of NMOS-based SSF Biquad due to the body effect is also proposed. Two 100-Hz 4th-order Butterworth LPFs using the SSF Biquads with and without GC were fabricated in 0.35- μm CMOS. Measurement results show that the non-GC (GC) LPF can achieve a DC gain of -3.7 dB (0 dB), an input-referred noise of 36 μV rms (29 μV rms ), a HD3@60 Hz of -55.2 dB ( - 60.7 dB) and a die size of 0.11 mm2 (0.08 mm2). Both LPFs draw 15 nW at 3 V. The achieved figure-of-merits (FoMs) are favorably comparable with the state-of-the-art.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:7 ,  Issue: 5 )