By Topic

Magnetic Fluid Hyperthermia Modeling Based on Phantom Measurements and Realistic Breast Model

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Miaskowski, A. ; Dept. of Appl. Math. & Comput. Sci., Univ. of Life Sci., Lublin, Poland ; Sawicki, B.

Magnetic fluid hyperthermia (MFH) is a minimally invasive procedure that destroys cancer cells. It is based on a superparamagnetic heat phenomenon and consists in feeding a ferrofluid into a tumor, and then applying an external electromagnetic field, which leads to apoptosis. The strength of the magnetic field, optimal dose of the ferrofluid, the volume of the tumor and the safety standards have to be taken into consideration when MFH treatment is planned. In this study, we have presented the novel complementary investigation based both on the experiments and numerical methodology connected with female breast cancer. We have conducted experiments on simplified female breast phantoms with numerical analysis and then we transferred the results on an anatomically-like breast model.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:60 ,  Issue: 7 )