Cart (Loading....) | Create Account
Close category search window
 

Effects of Robotic Knee Exoskeleton on Human Energy Expenditure

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gams, A. ; Dept. of Autom., Biocybernetics & Robot., Jozef Stefan Inst., Ljubljana, Slovenia ; Petric, T. ; Debevec, T. ; Babic, J.

A number of studies discuss the design and control of various exoskeleton mechanisms, yet relatively few address the effect on the energy expenditure of the user. In this paper, we discuss the effect of a performance augmenting exoskeleton on the metabolic cost of an able-bodied user/pilot during periodic squatting. We investigated whether an exoskeleton device will significantly reduce the metabolic cost and what is the influence of the chosen device control strategy. By measuring oxygen consumption, minute ventilation, heart rate, blood oxygenation, and muscle EMG during 5-min squatting series, at one squat every 2 s, we show the effects of using a prototype robotic knee exoskeleton under three different noninvasive control approaches: gravity compensation approach, position-based approach, and a novel oscillator-based approach. The latter proposes a novel control that ensures synchronization of the device and the user. Statistically significant decrease in physiological responses can be observed when using the robotic knee exoskeleton under gravity compensation and oscillator-based control. On the other hand, the effects of position-based control were not significant in all parameters although all approaches significantly reduced the energy expenditure during squatting.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:60 ,  Issue: 6 )

Date of Publication:

June 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.