By Topic

Compact Range Performance Evaluation Using Aperture Near-Field Angular Spectrums

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shaohui Quan ; Sch. of Electron. & Inf. Eng., Beihang Univ. (BUAA), Beijing, China

For a compact range (CR), the near-field angular spectrum can be obtained by making an inverse Fourier transform of its aperture spatial near field. The characteristics of the aperture design have been carried by the aperture near-field angular spectrum. The direct wave and edge-diffracted waves from the aperture can be separated and distinguished clearly in the angular domain. Therefore, the CR performance can be evaluated and improved accordingly. In this paper, based on the aperture field convolution method and plane wave spectrum (PWS) theory, near-field angular spectrums for different apertures have been computed. The general criteria for the CR aperture design have been discussed. The selections of the whole aperture shape, the serration height, the serration base length, the serration number, and the serration shape (including isosceles and right-angled triangles) have been compared. At last, the near fields of an optimized serrated-edge aperture and an original circular aperture in different transverse planes have been computed and compared. The width and height of the apertures are all 30 wavelengths in free space. In order to suppress the sidelobes, a Chebyshev window with - 50 dB sidelobes has been adopted in the spatial-angular transform.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:61 ,  Issue: 5 )