Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Consensus of Multi-Agent Systems With General Linear and Lipschitz Nonlinear Dynamics Using Distributed Adaptive Protocols

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhongkui Li ; Dept. of Mech. & Aerosp. Eng., Peking Univ., Beijing, China ; Wei Ren ; Xiangdong Liu ; Mengyin Fu

This technical brief considers the distributed consensus problems for multi-agent systems with general linear and Lipschitz nonlinear dynamics. Distributed relative-state consensus protocols with an adaptive law for adjusting the coupling weights between neighboring agents are designed for both the linear and nonlinear cases, under which consensus is reached for all undirected connected communication graphs. Extensions to the case with a leader-follower communication graph are further studied. In contrast to the existing results in the literature, the adaptive consensus protocols here can be implemented by each agent in a fully distributed fashion without using any global information.

Published in:

Automatic Control, IEEE Transactions on  (Volume:58 ,  Issue: 7 )