By Topic

CAD Tools for Hardware Implementation of Embedded Fuzzy Systems on FPGAs

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Brox, M. ; Dept. of Comput. Archit., Univ. of Cordoba, Cordoba, Spain ; Sanchez-Solano, S. ; del Toro, E. ; Brox, P.
more authors

This paper describes two computer-aided design (CAD) tools for automatic synthesis of fuzzy logic-based inference systems. The tools share a common architecture for efficient hardware implementation of fuzzy modules, but are based on two different design strategies. One of them is focused on the generation of standard VHDL code, which can be later implemented on a reconfigurable device [field-programmable gate array (FPGA)] or as an application-specific integrated circuit (ASIC). The other one uses the Matlab/Simulink environment and tools for development of digital signal processing (DSP) systems on Xilinx's FPGAs. Both tools are included in the last version of Xfuzzy, which is a specific environment for designing complex fuzzy systems, and they provide interfaces to commercial VHDL synthesis and verification tools, as well as to conventional FPGA development environments. As demonstrated by the included design example, the proposed development strategies speed up the stages of description, synthesis, and functional verification of embedded fuzzy inference systems.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:9 ,  Issue: 3 )