By Topic

Classifier-based learning of nonlinear feature manifold for visualization of emotional speech prosody

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vayrynen, E. ; Dept. of Comput. Sci. & Eng., Univ. of Oulu, Oulu, Finland ; Kortelainen, J. ; Seppanen, T.

Visualization of emotional speech data is an important tool for speech researchers who seek means to gain a deeper insight into the structure of complex multidimensional data. A visualization method is presented that utilizes feature selection and classifier optimization for learning Isomap manifolds of emotional speech data. The resulting manifold is based on those features that best discriminate between given emotional classes in the target space of specified embedding dimension. A nonlinear mapping function based on generalized regression neural networks (GRNNs) provides generalization for new data. A low-dimensional manifold of emotional speech data consisting of neutral, sad, angry, and happy expressions was constructed using prosodic and acoustic features of speech. Experimental results indicate that a 3D embedding provides the best classification performance. The manifold structure can be readily visualized and matches the circumplex and conical shapes predicted by dimensional models of emotion. Listening tests show excellent correlation between the organization of the data on the manifold and the listeners' judgment of emotional intensity.

Published in:

Affective Computing, IEEE Transactions on  (Volume:4 ,  Issue: 1 )