We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

An Efficient Algorithm for a Grasp Quality Measure

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yu Zheng ; Disney Res., Pittsburgh, PA, USA

This paper presents an efficient algorithm to compute the minimum of the largest wrenches that a grasp can resist over all wrench directions with limited contact forces, which equals the minimum distance from the origin of the wrench space to the boundary of a grasp wrench set. This value has been used as an important grasp quality measure in optimal grasp planning for over two decades, but there has been no efficient way to compute it until now. The proposed algorithm starts with a polytope containing the origin in the grasp wrench set and iteratively grows it such that the minimum distance from the origin to the boundary of the polytope quickly converges to the aforementioned value. The superior efficiency and accuracy of this algorithm over the previous methods have been verified through theoretical and numerical comparisons.

Published in:

Robotics, IEEE Transactions on  (Volume:29 ,  Issue: 2 )