By Topic

Closed-Double-Magnetic Circuit for a Long-Stroke Horizontal Electromagnetic Vibration Exciter

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wen He$^{1}$ The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang Province Key Laboratory of Advanced Manufacturing Technology,, Zhejiang University,, Hangzhou, China ; Chunyu Wang ; Mei Yu ; Runjie Shen
more authors

A novel closed-double-magnetic circuit (CDMC) was presented to achieve high and uniform magnetic flux density (MFD) in the long air gap (LAG) of a long-stroke horizontal electromagnetic vibration exciter. First, the normal single-magnetic circuit (SMC) and the proposed CDMC were modeled by lumped element circuit using equivalent circuit principle, analyzed theoretically by the Kirchhoff's law and the superposition theorem. The comparison between the two circuits shows that the CDMC can have more intensive and more uniform MFD in the LAG. To strengthen the uniformity of the MFD in the LAG, the improved CDMC with uneven air gap and its design method were proposed theoretically. Thereafter, the uneven air gap structure expressed as a three-line-segment form was presented and its optimization was also conducted based on a finite element model referring to a prototype of a one-meter-stroke horizontal electromagnetic vibration excite. Then, the magnetic flux leakage of the magnetic circuits and the influence of slits in the outer magnetic yoke for practical application was also analyzed with the finite element method (FEM). The simulation demonstrates that the CDMC with optimal air gap can further improve the uniformity of the MFD in the LAG. In addition, it is also indicated that the CDMC has less flux leakage than the SMC and the influence of slits can be negligible. Finally, the experiment on the prototype also verifies the effectiveness of proposed CDMC with optimal air gap.

Published in:

IEEE Transactions on Magnetics  (Volume:49 ,  Issue: 8 )