By Topic

Bounded Constrained Filtering for GPS/INS Integration

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Garry A. Einicke ; Commonwealth Scientific and Industrial Research Organisation, Pullenvale, Australia ; Gianluca Falco ; John T. Malos

This paper considers estimation problems where inequality constraints are imposed on the outputs of linear systems and can be modeled by nonlinear functions. In this case, censoring functions can be designed to constrain measurements for use by filters and smoothers. It is established that the filter and smoother output estimates are unbiased, provided that the underlying probability density functions are even and the censoring functions are odd. The Bounded Real Lemma is employed to ensure that the output estimates satisfy a performance criterion. A global positioning system (GPS) and inertial navigation system (INS) integration application is discussed in which a developed solution exhibits improved performance during GPS outages when a priori information is used to constrain the altitude and velocity measurements.

Published in:

IEEE Transactions on Automatic Control  (Volume:58 ,  Issue: 1 )