By Topic

Separate Magnitude and Phase Regularization via Compressed Sensing

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Feng Zhao ; Biomed. Eng. Dept., Univ. of Michigan, Ann Arbor, MI, USA ; Noll, D.C. ; Nielsen, J.-F. ; Fessler, J.A.

Compressed sensing (CS) has been used for accelerating magnetic resonance imaging acquisitions, but its use in applications with rapid spatial phase variations is challenging, e.g., proton resonance frequency shift (PRF-shift) thermometry and velocity mapping. Previously, an iterative MRI reconstruction with separate magnitude and phase regularization was proposed for applications where magnitude and phase maps are both of interest, but it requires fully sampled data and unwrapped phase maps. In this paper, CS is combined into this framework to reconstruct magnitude and phase images accurately from undersampled data. Moreover, new phase regularization terms are proposed to accommodate phase wrapping and to reconstruct images with encoded phase variations, e.g., PRF-shift thermometry and velocity mapping. The proposed method is demonstrated with simulated thermometry data and in vivo velocity mapping data and compared to conventional phase corrected CS.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 9 )