By Topic

Physical Human Interactive Guidance: Identifying Grasping Principles From Human-Planned Grasps

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Balasubramanian, R. ; Oregon State Univ., Corvallis, OR, USA ; Ling Xu ; Brook, P.D. ; Smith, J.R.
more authors

We present a novel and simple experimental method called physical human interactive guidance to study human-planned grasping. Instead of studying how the human uses his/her own biological hand or how a human teleoperates a robot hand in a grasping task, the method involves a human interacting physically with a robot arm and hand, carefully moving and guiding the robot into the grasping pose, while the robot's configuration is recorded. Analysis of the grasps from this simple method has produced two interesting results. First, the grasps produced by this method perform better than grasps generated through a state-of-the-art automated grasp planner. Second, this method when combined with a detailed statistical analysis using a variety of grasp measures (physics-based heuristics considered critical for a good grasp) offered insights into how the human grasping method is similar or different from automated grasping synthesis techniques. Specifically, data from the physical human interactive guidance method showed that the human-planned grasping method provides grasps that are similar to grasps from a state-of-the-art automated grasp planner, but differed in one key aspect. The robot wrists were aligned with the object's principal axes in the human-planned grasps (termed low skewness in this paper), while the automated grasps used arbitrary wrist orientation. Preliminary tests show that grasps with low skewness were significantly more robust than grasps with high skewness (77-93%). We conclude with a detailed discussion of how the physical human interactive guidance method relates to existing methods to extract the human principles for physical interaction.

Published in:

Robotics, IEEE Transactions on  (Volume:28 ,  Issue: 4 )