By Topic

Multimodal Emotion Recognition in Response to Videos

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Soleymani, M. ; Comput. Sci. Dept., Univ. of Geneva, Carouge, Switzerland ; Pantic, M. ; Pun, T.

This paper presents a user-independent emotion recognition method with the goal of recovering affective tags for videos using electroencephalogram (EEG), pupillary response and gaze distance. We first selected 20 video clips with extrinsic emotional content from movies and online resources. Then, EEG responses and eye gaze data were recorded from 24 participants while watching emotional video clips. Ground truth was defined based on the median arousal and valence scores given to clips in a preliminary study using an online questionnaire. Based on the participants' responses, three classes for each dimension were defined. The arousal classes were calm, medium aroused, and activated and the valence classes were unpleasant, neutral, and pleasant. One of the three affective labels of either valence or arousal was determined by classification of bodily responses. A one-participant-out cross validation was employed to investigate the classification performance in a user-independent approach. The best classification accuracies of 68.5 percent for three labels of valence and 76.4 percent for three labels of arousal were obtained using a modality fusion strategy and a support vector machine. The results over a population of 24 participants demonstrate that user-independent emotion recognition can outperform individual self-reports for arousal assessments and do not underperform for valence assessments.

Published in:

Affective Computing, IEEE Transactions on  (Volume:3 ,  Issue: 2 )