Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

On the Reachability and Observability of Path and Cycle Graphs

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Parlangeli, G. ; Dept. of Eng., Univ. of Lecce, Lecce, Italy ; Notarstefano, G.

In this technical note we investigate the reachability and observability properties of a network system, running a Laplacian based average consensus algorithm, when the communication graph is a path or a cycle. Specifically, we provide necessary and sufficient conditions, based on simple rules from number theory, to characterize all and only the nodes from which the network system is reachable (respectively observable). Interesting immediate corollaries of our results are: i) a path graph is reachable (observable) from any single node if and only if the number of nodes of the graph is a power of two,n = 2i ; i ∈N and ii) a cycle is reachable (observable) from any pair of nodes if and only if n is a prime number. For any set of control (observation) nodes, we provide a closed form expression for the (unreachable) unobservable eigenvalues and for the eigenvectors of the (unreachable) unobservable subsystem.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 3 )