By Topic

Human-Like Adaptation of Force and Impedance in Stable and Unstable Interactions

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chenguang Yang ; Department of Bioengineering, Imperial College London, London, U.K. ; Gowrishankar Ganesh ; Sami Haddadin ; Sven Parusel
more authors

This paper presents a novel human-like learning controller to interact with unknown environments. Strictly derived from the minimization of instability, motion error, and effort, the controller compensates for the disturbance in the environment in interaction tasks by adapting feedforward force and impedance. In contrast with conventional learning controllers, the new controller can deal with unstable situations that are typical of tool use and gradually acquire a desired stability margin. Simulations show that this controller is a good model of human motor adaptation. Robotic implementations further demonstrate its capabilities to optimally adapt interaction with dynamic environments and humans in joint torque controlled robots and variable impedance actuators, without requiring interaction force sensing.

Published in:

IEEE Transactions on Robotics  (Volume:27 ,  Issue: 5 )