Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Quantized Consensus by Means of Gossip Algorithm

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lavaei, J. ; Dept. of Control & Dynamical Syst., California Inst. of Technol., Pasadena, CA, USA ; Murray, R.M.

This paper deals with the distributed averaging problem over a connected network of agents, subject to a quantization constraint. It is assumed that at each time update, only a pair of agents can update their own states in terms of the quantized data being exchanged. The agents are also required to communicate with one another in a stochastic fashion. It is shown that a quantized consensus is reached for an arbitrary quantizer by means of the stochastic gossip algorithm proposed in a recent paper. The expected value of the time at which a quantized consensus is reached is lower and upper bounded in terms of the topology of the graph for a uniform quantizer. In particular, it is shown that these bounds are related to the principal submatrices of the weighted Laplacian matrix. A convex optimization is also proposed to determine a set of probabilities used to pick a pair of agents that leads to a fast convergence of the gossip algorithm.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 1 )