By Topic

Finite-Time Attitude Tracking Control of Spacecraft With Application to Attitude Synchronization

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haibo Du ; Sch. of Autom., Southeast Univ., Nanjing, China ; Shihua Li ; Chunjiang Qian

This note investigates the finite-time attitude control problems for a single spacecraft and multiple spacecraft. First of all, a finite-time controller is designed to solve finite-time attitude tracking problem for a single spacecraft. Rigorous proof shows that the desired attitude can be tracked in finite time in the absence of disturbances. In the presence of disturbances, the tracking errors can reach a region around the origin in finite time. Then, based on the neighbor rule, a distributed finite-time attitude control law is proposed for a group of spacecraft with a leader-follower architecture. Under the finite-time control law, the attitude synchronization can be achieved in finite time.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 11 )