Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Random Rough Surface Effects on Wave Propagation in Interconnects

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Leung Tsang ; Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA ; Braunisch, H. ; Ruihua Ding ; Xiaoxiong Gu

To address the rough surface effects in high-speed interconnects on printed circuit boards (PCBs) and microelectronic packages, we study the electromagnetic wave propagation in a rough surface environment. In our model, the rough surface is characterized by a stochastic random process with correlation function or spectral density. This paper reviews the analytical theory, numerical simulations and experimental results based on such a model. We describe the rough surface characterization and the extraction of roughness parameters from 3D profile measurements. Initially we study the 2D case with the rough surface height function varying in only one horizontal direction and consider the case of plane wave incidence. Analytic second-order small perturbation method (SPM2) was used to obtain simple closed-form expressions for the absorption enhancement factor. The numerical transfer matrix (T-matrix) method and the method of moments (MoM) were also used. We next consider the case of the 3D problem with the rough surface height varying in both horizontal directions. We also used SPM2 to obtain a simple closed form expression for the enhancement factor. In interconnect problems, electromagnetic (EM) waves propagate in a guided wave environment. Thus, we next considered a waveguide model to study the effects of random roughness on wave propagation and compare with results from the plane wave formulation. Analytic SPM2 and numerical finite element method (FEM) with mode matching were used to obtain the enhancement factor. We also describe experimental results and correlation with the theoretical models. Finally, we explain how the enhancement factor concept used throughout lends itself to direct inclusion of rough surface effects in a wide variety of modeling problems.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:33 ,  Issue: 4 )