By Topic

Clustering Algorithms in Biomedical Research: A Review

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rui Xu ; Ind. Artificial Intell. Lab., GE Global Res. Center, Niskayuna, NY, USA ; Wunsch, D.C.

Applications of clustering algorithms in biomedical research are ubiquitous, with typical examples including gene expression data analysis, genomic sequence analysis, biomedical document mining, and MRI image analysis. However, due to the diversity of cluster analysis, the differing terminologies, goals, and assumptions underlying different clustering algorithms can be daunting. Thus, determining the right match between clustering algorithms and biomedical applications has become particularly important. This paper is presented to provide biomedical researchers with an overview of the status quo of clustering algorithms, to illustrate examples of biomedical applications based on cluster analysis, and to help biomedical researchers select the most suitable clustering algorithms for their own applications.

Published in:

Biomedical Engineering, IEEE Reviews in  (Volume:3 )