By Topic

Algorithms for Advanced Battery-Management Systems

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)

Lithium-ion (Li-ion) batteries are ubiquitous sources of energy for portable electronic devices. Compared to alternative battery technologies, Li-ion batteries provide one of the best energy-to-weight ratios, exhibit no memory effect, and have low self-discharge when not in use. These beneficial properties, as well as decreasing costs, have established Li-ion batteries as a leading candidate for the next generation of automotive and aerospace applications. In the automotive sector, increasing demand for hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), and EVs has pushed manufacturers to the limits of contemporary automotive battery technology. This limitation is gradually forcing consideration of alternative battery technologies, such as Li-ion batteries, as a replacement for existing leadacid and nickel-metal-hydride batteries. Unfortunately, this replacement is a challenging task since automotive applications demand large amounts of energy and power and must operate safely, reliably, and durably at these scales. The article presents a detailed description and model of a Li-ion battery. It begins the section "Intercalation-Based Batteries" by providing an intuitive explanation of the fundamentals behind storing energy in a Li-ion battery. In the sections "Modeling Approach" and "Li-Ion Battery Model," it present equations that describe a Li-ion cell's dynamic behavior. This modeling is based on using electrochemical principles to develop a physics-based model in contrast to equivalent circuit models. A goal of this article is to present the electrochemical model from a controls perspective.

Published in:

Control Systems, IEEE  (Volume:30 ,  Issue: 3 )