By Topic

Interrobot Transformations in 3-D

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Trawny, N. ; Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Zhou, X.S. ; Ke Zhou ; Roumeliotis, S.I.

In this paper, we provide a study of motion-induced 3-D extrinsic calibration based on robot-to-robot sensor measurements. In particular, we introduce algebraic methods to compute the relative translation and rotation between two robots using known robot motion and robot-to-robot (1) distance and bearing, (2) bearing-only, and (3) distance-only measurements. We further conduct a nonlinear observability analysis and provide sufficient conditions for the 3-D relative position and orientation (pose) to become locally weakly observable. Finally, we present a nonlinear weighted least-squares estimator to refine the algebraic pose estimate in the presence of noise. We use simulations to evaluate the performance of our methods in terms of accuracy and robustness.

Published in:

Robotics, IEEE Transactions on  (Volume:26 ,  Issue: 2 )