By Topic

Input Delay Compensation for Forward Complete and Strict-Feedforward Nonlinear Systems

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Krstic, M. ; Dept. of Mech. & Aerosp. Eng., Univ. of California, San Diego, La Jolla, CA, USA

We present an approach for compensating input delay of arbitrary length in nonlinear control systems. This approach, which due to the infinite dimensionality of the actuator dynamics and due to the nonlinear character of the plant results in a nonlinear feedback operator, is essentially a nonlinear version of the Smith predictor and its various predictor-based modifications for linear plants. Global stabilization in the presence of arbitrarily long delay is achieved for all nonlinear plants that are globally stabilizable in the absence of delay and that satisfy the property of forward completeness (which is satisfied by most mechanical systems, electromechanical systems, vehicles, and other physical systems). For strict-feedforward systems, one obtains the predictor-based feedback law explicitly. For the linearizable subclass of strict-feedforward systems, closed-loop solutions are also obtained explicitly. The feedback designs are illustrated through two detailed examples.

Published in:

Automatic Control, IEEE Transactions on  (Volume:55 ,  Issue: 2 )