By Topic

Clinical Applications of Brain-Computer Interfaces: Current State and Future Prospects

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mak, J.N. ; New York State Dept. of Health, Wadsworth Center, Albany, NY, USA ; Wolpaw, J.R.

Braincomputer interfaces (BCIs) allow their users to communicate or control external devices using brain signals rather than the brain's normal output pathways of peripheral nerves and muscles. Motivated by the hope of restoring independence to severely disabled individuals and by interest in further extending human control of external systems, researchers from many fields are engaged in this challenging new work. BCI research and development has grown explosively over the past two decades. Efforts have begun recently to provide laboratory-validated BCI systems to severely disabled individuals for real-world applications. In this paper, we discuss the current status and future prospects of BCI technology and its clinical applications. We will define BCI, review the BCI-relevant signals from the human brain, and describe the functional components of BCIs. We will also review current clinical applications of BCI technology and identify potential users and potential applications. Lastly, we will discuss current limitations of BCI technology, impediments to its widespread clinical use, and expectations for the future.

Published in:

Biomedical Engineering, IEEE Reviews in  (Volume:2 )