By Topic

Coded Noncoherent Communications

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
William C. Lindsey ; Jet Propulsion Lab., California Institute of Technology, Pasadena, Calif.

This paper presents detailed results on the relative merits of encoding blocks of binary digits into a set of equiprobable, equal energy, orthogonal signals each containing n bits of information. During a time interval of T seconds, one signal from this set is selected and transmitted over the ``Rician'' channel, further perturbed by additive white Gaussian noise and noncoherently detected at the receiver by matched filters and follow-up envelope detectors. Word and bit error probabilities (and bounds on these) are graphically illustrated for various degrees of coding and for various forms of the channel model. Particular emphasis is placed on the Gaussian channel. Special cases of Viterbi's results for coded phase-coherent communications are compared with those obtained in this paper. Bandwidth considerations are also discussed. The results are useful to the engineer who is faced with the problem of designing coded communication systems where power is limited to the point that phase coherence cannot be established at the receiver. Typical examples are space communications where it is desired to telemeter scientific data from small scientific satellites or space probes or for scatter-channel links which are to be used for relaying data between two widely separated points on the earth.

Published in:

IEEE Transactions on Space Electronics and Telemetry  (Volume:SET-11 ,  Issue: 1 )