By Topic

Linear estimation in Krein spaces. I. Theory

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
B. Hassibi ; Inf. Syst. Lab., Stanford Univ., CA, USA ; A. H. Sayed ; T. Kailath

The authors develop a self-contained theory for linear estimation in Krein spaces. The derivation is based on simple concepts such as projections and matrix factorizations and leads to an interesting connection between Krein space projection and the recursive computation of the stationary points of certain second-order (or quadratic) forms. The authors use the innovations process to obtain a general recursive linear estimation algorithm. When specialized to a state-space structure, the algorithm yields a Krein space generalization of the celebrated Kalman filter with applications in several areas such as H -filtering and control, game problems, risk sensitive control, and adaptive filtering

Published in:

IEEE Transactions on Automatic Control  (Volume:41 ,  Issue: 1 )