By Topic

Lyapunov iterations for optimal control of jump linear systems at steady state

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gajic, Z. ; Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA ; Borno, I.

In this paper we construct a sequence of Lyapunov algebraic equations,whose solutions converge to the solutions of the coupled algebraic Riccati equations of the optimal control problem for jump linear systems. The obtained solutions are positive semidefinite, stabilizing, and unique. The proposed algorithm is extremely efficient from the numerical point of view since it operates only on the reduced-order decoupled Lyapunov equations, Several examples are included to demonstrate the procedure

Published in:

Automatic Control, IEEE Transactions on  (Volume:40 ,  Issue: 11 )