By Topic

Online Algorithms with Discrete Visibility - Exploring Unknown Polygonal Environments

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ghosh, S.K. ; Tata Inst. of Fundamental Res., Mumbai ; Burdick, J.W. ; Bhattacharya, A. ; Sarkar, S.

The context of this work is the exploration of unknown polygonal environments with obstacles. Both the outer boundary and the boundaries of obstacles are piecewise linear. The boundaries can be nonconvex. The exploration problem can be motivated by the following application. Imagine that a robot has to explore the interior of a collapsed building, which has crumbled due to an earthquake, to search for human survivors. It is clearly impossible to have a knowledge of the building's interior geometry prior to the exploration. Thus, the robot must be able to see, with its onboard vision sensors, all points in the building's interior while following its exploration path. In this way, no potential survivors will be missed by the exploring robot. The exploratory path must clearly reflect the topology of the free space, and, therefore, such exploratory paths can be used to guide future robot excursions (such as would arise in our example from a rescue operation).

Published in:

Robotics & Automation Magazine, IEEE  (Volume:15 ,  Issue: 2 )