By Topic

A new cooperative approach to discrete particle swarm optimization

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yiheng Xu ; Waseda Univ., Fukuoka ; Jinglu Hu ; Hirasawa, K. ; Xiaohong Pang

Particle swarm optimization (PSO) is a kind of evolutionary algorithm to find optimal (or near optimal) solutions for numerical and qualitative problems. Recently, a new variation on the traditional PSO algorithm, called cooperative particle swarm optimization (CPSO), has been proposed, employing cooperative behavior to significantly improve the performance of the original algorithm. However, a standard CPSO is focused only on continuous problems. In this paper, we present a new approach based on the CPSO to solve combination optimization problems by introducing dynamic splitting schemes. Reverse operation and simulated annealing techniques are further used to prevent the algorithm from being trapped in local minima. Finally, traveling salesman problem (TSP) is applied to show the effectiveness of the proposed PSO.

Published in:

SICE, 2007 Annual Conference

Date of Conference:

17-20 Sept. 2007